Inverse Subspace Iteration for Spectral Stochastic Finite Element Methods
نویسنده
چکیده
We study random eigenvalue problems in the context of spectral stochastic finite elements. In particular, given a parameter-dependent, symmetric positive-definite matrix operator, we explore the performance of algorithms for computing its eigenvalues and eigenvectors represented using polynomial chaos expansions. We formulate a version of stochastic inverse subspace iteration, which is based on the stochastic Galerkin finite element method, and we compare its accuracy with that of Monte Carlo and stochastic collocation methods. The coefficients of the eigenvalue expansions are computed from a stochastic Rayleigh quotient. Our approach allows the computation of interior eigenvalues by deflation methods, and we can also compute the coefficients of multiple eigenvectors using a stochastic variant of the modified Gram-Schmidt process. The effectiveness of the methods is illustrated by numerical experiments on benchmark problems arising from vibration analysis.
منابع مشابه
Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems
We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the solution is sought from a finite dimensional space formed as the tensor product of the approximation space for the underlying stochastic function space, and the approximation spac...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملIterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems
A new algorithm for the computation of the spectral expansion of the eigenvalues and eigenvectors of a random non-symmetric matrix is proposed. The algorithm extends the deterministic inverse power method using a spectral discretization approach. The convergence and accuracy of the algorithm is studied for both symmetric and non-symmetric matrices. The method turns out to be efficient and robus...
متن کاملSolving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods
Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the f...
متن کاملPreconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems
We construct a preconditioned modified Hermitian and skew-Hermitian splitting (PMHSS) iteration scheme for solving and preconditioning a class of block two-by-two linear systems arising from the Galerkin finite element discretizations of a class of distributed control problems. The convergence theory of this class of PMHSS iteration methods is established and the spectral properties of the PMHS...
متن کامل